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A new insight into the reciprocity principle

Bo/ rge Arntsen∗ and José M. Carcione‡

ABSTRACT

Reciprocity is usually applied to wavefields associated
with concentrated point forces and point receivers, but,
reciprocity has a much wider application potential. In
many cases, however, it is not used at its full potential
because (1) a variety of source and receiver types are
not considered or (2) its implementation is not well un-
derstood.

We obtain reciprocity relations for inhomogeneous,
anisotropic, viscoelastic solids and for distributed
sources and receivers, and test these relations with a
full-wave numerical modeling algorithm. The theory and
the numerical experiments show that, in addition to the
usual relations involving directional forces, (1) the diag-
onal components of the strain tensor are reciprocal for
dipole sources (single couple without moment), (2) the
off-diagonal components of the stress tensor are recipro-
cal for double couples with moments, (3) the dilatation
due to a directional force is reciprocal to the particle
velocity due to a dilatational source, and (4) some com-
binations of the off-diagonal strains are reciprocal for
single couples with moments.

INTRODUCTION

The reciprocity principle relates two wavefields in a medium
where the sources and the field receivers are interchanged. The
reciprocity principle for static displacements is credited to Betti
(1872). Rayleigh (1873) extended the principle to elastody-
namic fields and included the action of dissipative forces. Lamb
(1888) showed how the reciprocal theorems of von Helmholtz
(in the theory of least action in acoustics and optics) and of
Lord Rayleigh (in acoustics) can be derived from a remark-
able formula established by Lagrange in his 1909 Méchanique
Analytique (Fung, 1965). In the twentieth century, the work of
Graffi (1939, 1954, 1963) is notable. Graffi derived the first con-
volutional reciprocity theorem for an isotropic, homogeneous,
perfectly elastic solid with its extension to inhomogeneous elas-
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tic anisotropic media achieved by Knopoff and Gangi (1959).
Gangi (1970) developed a volume integral, time-convolution
formulation of the reciprocity principle for inhomogeneous,
anisotropic linearly elastic media. This formulation allows the
use of distributed sources as well as multicomponent sources
(i.e., couples with and without moment). He also derived a
representation of particle displacement in terms of Green’s
theorem.

De Hoop (1966) generalized the principle to the viscoelastic
anisotropic case in the time domain. A direct numerical test
of the principle in the inhomogeneous elastic anisotropic case
was performed by Carcione and Gangi (1998). A notable con-
tribution is the work of Boharski (1983), who distinguished
between convolution-type and correlation-type reciprocity re-
lations. Recently, De Hoop and Stam (1988) derived a general
reciprocity theorem valid for solids with relaxation, including
reciprocity for stress, as well as for particle velocity. Useful ap-
plications of the reciprocity principle can be found in Fokkema
and van den Berg (1993).

Reciprocity holds for the very general case of an inhomoge-
neous anisotropic viscoelastic solid in the presence of boundary
surfaces satisfying Dirichlet and/or Neumman boundary con-
ditions (e.g., Lamb’s problem) (Fung, 1965). However, it is not
clear how the principle is applied when the sources are couples
(Fenati and Rocca, 1984). For instance, Mittet and Hokstad
(1995) used reciprocity to transform walkaway VSP data into
reverse VSP data, for offshore acquisition. Nyitrai et al. (1996)
claim that the analytical solution to Lamb’s problem (expressed
in terms of particle displacement) for a dilatational point source
does not exhibit reciprocity when the source and receiver lo-
cations are interchanged. Hence, the following question arises:
what, if any, source-receiver configuration is reciprocal in this
particular situation? In order to answer this question, we ap-
plied the reciprocity principle to the case of sources of cou-
ples and demonstrate that for any particular source, there is a
corresponding receiver configuration which makes the source-
receiver pair reciprocal.

We shall consider a viscoelastic transversely isotropic (VTI)
constitutive equation, where anelasticity is described by
the standard-linear-solid rheology, and perform numerical
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experiments in an inhomogeneous model. The 2-D time-
domain equations for propagation in a heterogeneous VTI
medium can be found in Carcione (1995, 1997). They are given
in the particle velocity-stress formulation, and are solved nu-
merically by using the Fourier pseudospectral method to com-
pute the spatial derivatives. A fourth-order Runge-Kutta tech-
nique is used to compute the wavefield recursively in time.
Lamb’s problem is solved with a similar algorithm, except
that the modified Chebysehev differential operator is used
along the direction perpendicular to the free surface (Carcione,
1992).

RECIPROCITY PRINCIPLE FOR AN ANISOTROPIC
VISCOELASTIC MEDIUM

Let us consider a volume V , enclosed by a surface S, in a vis-
coelastic solid of density ρ(x) and relaxation tensor ψi jkl (x, t),
where x= (x, y, z)= (x1, x2, x3) denotes the position and t de-
notes the time. The equation of motion and the stress-strain
relation take the following form:

ρ(x)üi (x, t) = ∂ jσi j (x, t)+ fi (x, t), (1)

σi j (x, t) = ψi jkl (x, t) ∗ ekl(x, t), (2)

where the indices i and j refer to x, y, and z; ui are the dis-
placement components; σi j are the stress components; fi are
the body-force components; and ei j are the strain components
given by

ei j = 1
2

(∂i u j + ∂ j ui ). (3)

The notation ∂ j is used to indicate a spatial partial derivative
in the x, y, or z direction. The operator ∗ denotes the time
convolution, defined by

a(t) ∗ b(t) =
∫ t

0
dτ a(t − τ )b(τ ), (4)

where a and bare arbitrary time functions. Double dots above a
variable indicate a second-order time derivative, and Einstein’s
summation convention is used.

A reciprocity theorem valid for a general viscoelastic
anisotropic medium can be derived from the equation of mo-
tion (1) and the constitutive equation (2) (Knopoff and Gangi,
1959; De Hoop, 1966) and written in the form of a volume
integral:∫

dx[ui (x, t) ∗ f ′i (x, t)− fi (x, t) ∗ u′i (x, t)] = 0. (5)

Here ui is the i th component of the displacement due to the
source f, whereas u′i is the i th component of the displacement
due to the source f ′. The derivation of equation (5) assumes
that the stresses are zero on the boundary S. Zero initial con-
ditions for the displacements are also assumed. Equation (5)
is well known and can conveniently be used for deriving rep-
resentations of the displacement in terms of Green’s tensor
(Gangi, 1970).

In the following, it is assumed that the time dependence of
the displacements and sources are such that the Fouriér trans-
forms over time exists. Then, equation (5) can be Fouriér trans-
formed into the frequency domain:∫

dx[Ui (x, ω)F ′i (x, ω)− Fi (x, ω)U ′i (x, ω)] = 0, (6)

where Ui , F ′i , Fi , and U ′i are the Fouriér transforms of ui , f ′i , fi ,
and u′i , respectively, and ω is the angular frequency.

Equation (6) can also be expressed in terms of the particle
velocity Vi (x, ω)= iωUi (x, ω) by multiplying both sides with
iω: ∫

dx[Vi (x, ω)F ′i (x, ω)− Fi (x, ω)V ′i (x, ω)] = 0. (7)

In the time domain, equation (7) reads∫
dx[vi (x, t) ∗ f ′i (x, t)− fi (x, t) ∗ v′i (x, t)] = 0, (8)

where vi is the particle velocity. In the special case that the
sources fi and f ′i have the same time dependence and can be
written as a product of a spatial part g(x) and a temporal part
h(t),

fi (x, t) = h(t)gi (x),
(9)

f ′i (x, t) = h(t)g′i (x),

equation (7) reads∫
dx[Vi (x, ω)g′i (x)H(ω)− gi (x)H(ω)V ′i (x, ω)] = 0,

(10)
where H(ω) is the Fouriér transform of h(t). Equation (10) is
equivalent to∫

dx[Vi (x, ω)g′i (x)− gi (x)V ′i (x, ω)] = 0, (11)

because Vi and V ′i is zero whenever H is zero.
In the time domain, equation (11) reads∫

dx[vi (x, t)g′i (x)− gi (x)v′i (x, t)] = 0. (12)

RECIPROCITY OF PARTICLE VELOCITY

In the following, the indices mand p indicate either x, y, or z.
The spatial part gi of the body force fi will simply be referred
to as the body force.

To indicate the direction of the body force, a superscript is
used so that the i th component gm

i of a body force acting at
x= x0 in the m-direction is specified by

gm
i (x; x0) = δ(x− x0)δm

i . (13)

Here, δ(x) is Dirac’s delta function, and the symbol δm
i is defined

by

δm
i =

{
1 m= i

0 m 6= i
. (14)

The i th component gp
i of a body force acting at x= x′0 in the

p-direction is similarly given by

gp
i (x; x0) = δ(x− x′0)δ p

i . (15)

We will occasionally refer to body forces of the type given by
equations (13) and (15) as monopoles. In the following, we use
a superscript on the particle velocity to indicate the direction
of the corresponding body force; vm

i then indicates the i th com-
ponent of the particle velocity due to a body force acting in the
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m-direction, v p
i indicates the i th component of the particle ve-

locity due to a body force acting in the p-direction. In addition,
we also indicate the position of the source in the argument of
the particle velocity such that a complete specification of the
i th component of the particle velocity due to a body force act-
ing at position x0 in the m-direction is written as vm

i (x, t; x0).
For the primed system, we similarly have v p

i (x, t; x′0). The only
difference between the primed and unprimed systems is that in
the latter the source is acting in the p-direction and is located
at position x′0.

In the Appendix [see equation (A-3)], the well-known result
(Knopoff and Gangi, 1959)

vm
p (x′0, t; x0) = v p

m(x0, t; x′0), (16)

is derived using equation (12).
This equation reveals a fundamental symmetry of the wave-

field in a viscoelastic medium: in any given experiment, the
source and receiver positions may be interchanged provided
that the particle velocity component indices and the force
component indices are interchanged. Note that this equation
only applies to the situation where the source consists of a
simple body force. In order to illustrate the interpretation of
equation (16), Figure 1 shows three possible 2-D reciprocity
experiments.

RECIPROCITY OF STRAIN

For sources more complex than a body force directed along
one of the coordinate axes, the reciprocity relation will differ
from equation (16). Equation (12) is, however, valid for an
arbitrary spatially distributed source and will be used to derive
reciprocity relations for couples of forces. Reviews of the use of
couples for modeling earthquake sources can be found in Aki
and Richards (1980) and Pilant (1979). We investigate the use
of force couples of different types in the following subsection.

FIG. 1. Some 2-D reciprocal experiments for single forces. The
body forces are positioned at x0 and x′0. Also gx = gz = δ(x−x0)
while g′x = g′z = δ(x− x′0), where δ is Dirac’s delta function.

Couples

We shall be concerned with sources consisting of force cou-
ples where the i th component of the body force takes the par-
ticular form

gmn
i (x; x0) = ∂ j δ(x− x0)δm

i δ
n
j . (17)

Here, the double superscript mn is used to indicate that the
force couple depends on the m and n directions. In the primed
system the source are similarly specified by

gpq
i (x; x′0) = ∂ j δ(x− x′0)δ p

i δ
q
j . (18)

Following Aki and Richards (1980), the forces in equations (17)
and (18) may be thought of as composed of a simple (point)
force in the positive m-direction and another force of equal
magnitude in the negative m-direction separated by a small
distance in the n-direction. The magnitude of the forces must
be chosen such that the product of the distance between the
forces and the magnitude is unity. This is illustrated by the
examples in Figures 2 and 3. Although these examples are two-
dimensional, we can think of the third (y-) axis as normal to
the plane defined by the x- and z-axes. The source in the top
left experiment in Figure 2 can be obtained from equation (17)
by putting x0 at the origin with m= n= x. Then, gxx

y = gxx
z = 0

and

gxx
x (x; 0) = ∂xδ(x). (19)

Consider now the source in the top left experiment in Fig-
ure 3. Using equation (17) and assuming m= x and n= z, then
gxz

y = gxz
z = 0 and

gxz
x (x; 0) = ∂zδ(x). (20)

This body force possesses a moment around the y-axis, in con-
trast to the source considered in Figure 2, which has zero mo-
ment around the y-axis. Whenever m= n, the body force is
referred to as a couple without moment, whereas when m 6= n

FIG. 2. Some 2-D reciprocal experiments for couples without
moment. The body forces are positioned at x0 and x′0. Also
gx = gz= δ(x− x0) while g′x = g′z= δ(x− x′0), where δ is a Dirac
delta function.
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the corresponding body force is referred to as a couple with
moment. Figures 2 and 3 also illustrate other examples of cou-
ples with and without moment.

The particle velocity corresponding to the body force given
by equation (17) is written as vmn

i (x, t; x0), using a double su-
perscript. The particle velocity in the primed system is corre-
spondingly written as v pq

i (x, t; x′0).
Substituting equations (17) and (18) into equation (12) and

using properties of Dirac’s delta function, yields the reciprocity
relation for couple forces as derived in the Appendix [equa-
tion (A-12)]:

∂q
[
vmn

p (x′0, t; x0)
] = ∂n

[
v pq

m (x0, t; x′0)
]
. (21)

The interpretation of equation (21) is similar to that of equa-
tion (16), except that the derivatives of the particle velocity are
reciprocal instead of the particle velocity itself.

Single couples without moment.—When m= n and p=q in
equation (21), the derivatives are calculated along the force
directions. The resulting couples have orientations depending
on the force directions. This is illustrated in Figure 2 for three
different experiments.

Single couples with moment.—This situation corresponds to
the case m 6= n and p 6=q in equation (21). The resulting couples
have moments, with three possible experiments illustrated in
Figure 3.

Double couples.—Two perpendicular couples without mo-
ments constitute a dilatational source.

This source can be expressed as

gi (x; x0) = ∂i δ(x− x0). (22)

The i th component of the corresponding particle velocity is
denoted by vi (x, t; x0).

FIG. 3. Some 2-D reciprocal experiments for single couples
with moment. The body forces are positioned at x0 and x′0.
Also gx = gz= δ(x− x0) while g′x = g′z= δ(x− x′0), where δ is a
Dirac delta function.

The above dilatational force leads to a reciprocity relation
of the type [see equation (A-17)]

e(x′0, t; x0) = e(x0, t; x′0), (23)

where

e= ∂xvx + ∂yvy + ∂zvz (24)

is the time derivative of the dilatation. Equation (24) indicates
that for a dilatational point source (explosion), the trace of the
time derivative of the strain tensor (dilatation) is unchanged
when the source and receiver are interchanged.

Consider the case of a double couple without moment in the
unprimed system [equation (22)], with corresponding particle-
velocity components denoted by vi (x, t; x0), and in the primed
system there is a monopole [equation (15)] with correspond-
ing particle-velocity components given by vm

i (x, t, x′0). Here m
indicates the direction of the monopole body force. The reci-
procity relation for this case is given in the Appendix [equa-
tion (A-22)]:

vm(x′0, t; x0) = em(x0, t; x′0), (25)

where em= ∂i v
m
i = ∂xv

m
x + ∂yv

m
y + ∂zv

m
z is the trace of the time

derivative of the strain tensor.
Equation (25) indicates that the particle velocity must be

substituted for the trace of the time derivative of the strain
tensor when the source and receiver are interchanged. The
case vz= ez is illustrated in Figure 4 (top).

Next, we consider the case when in the unprimed system
there is a double couple without moment [equation (22)],
with corresponding particle-velocity components given by
vi (x, t; x0), and in the primed system there is a single cou-
ple [equation (21)] with particle-velocity components given by
vmn

i (x, t; x′0). The corresponding reciprocity relation is derived
in the Appendix [equation (A-27)]:

∂nvm(x′0, t; x0) = emn(x0, t; x′0), (26)

FIG. 4. Some 2-D reciprocal experiments for double couples
without moment and single couples. The body forces are po-
sitioned at x0 and x′0. Also gx = gz = δ(x − x0) while
g′x = g′z = δ(x− x′0), where δ is a Dirac delta function.
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where emn= ∂i v
mn
i = ∂xv

mn
x + ∂yv

mn
y + ∂zv

mn
z . Here, the trace of

the time derivative of the strain must be substituted for the
derivatives of the particle velocity when the source and re-
ceiver are interchanged. Two examples are illustrated in Fig-
ure 4 (middle and bottom).

RECIPROCITY OF STRESS

Although equation (8) only involves the particle velocity, a
proper choice of the body forces fi and f ′i leads to reciprocity
relations for stress. This occurs for the following body-force
components:

f mn
i (x, t; x0) = [ψi jkl (x0, t)∂ j δ(x− x0)δm

k δ
n
l

] ∗ h(t),

(27)
and

f ′pq
i (x, t; x′0) = [ψi jkl (x′0, t)∂ j δ(x− x′0)δ p

k δ
q
l

] ∗ h(t).

(28)

They consist of couples with direction of forces and moments
defined by superscripts m, n, p, and q and the components of
the relaxation tensor at the source point. The components of
the stress tensor corresponding to those forces are denoted by
σmn

i j (x, t; x0) and σ pq
i j (x, t; x′0) respectively.

The reciprocity relation for stress is derived in the Appendix
[equation (A-41)] and given as

σ̇mn
pq (x′0, t; x0) = σ̇ pq

mn(x0, t; x′0). (29)

The interpretation of equation (29) is the following. The pq
stress component at position x′0 due to a body force with i th
component given by f mn

i at position x0 equals the mn stress
component at position x0 due to a body force with i th com-
ponent given by f pq

i located at position x′0. Figure 5 illustrates
the source and receiver configuration for an experiment corre-
sponding to reciprocity of stress.

NUMERICAL EXPERIMENTS

A set of numerical experiments verify the reciprocity rela-
tions, based on the source-receiver configuration and model
illustrated in Figure 6. Table 1 gives the material properties of
the different TIV media, where VP =

√
c33/ρ and VS=

√
c55/ρ

FIG. 5. Source and receiver configuration for reciprocal stress
experiments. The body forces are positioned at x0 and x′0. Also
fx = fz = δ(x − x0) while f ′x = f ′z = δ(x − x′0), where δ is a
Dirac delta function.

denote the unrelaxed vertical velocities, with cI J the unrelaxed
stiffnesses in abbreviated notation, and ρ the material density;
and

c11 = (2ε + 1)c33,

c13 =
[
2c33(c33 − c55)δ − (c33 − c55)2]1/2 − c55,

where ε and δ are the (unrelaxed) anisotropy coefficients de-
fined by Thomsen (1986). Finally, QP and QS are the quality
factors, due to single relaxation mechanisms related to dilata-
tion and shear deformations, respectively (see Carcione, 1997).

The numerical mesh has 231× 231 points with a grid spac-
ing DX = DZ = 10 m. The source is a Ricker-type wavelet and
has a central frequency of 25 Hz. The peak frequencies of the
relaxation mechanisms were also chosen to be 25 Hz. In grid
points, the source (with receiver in the reciprocal experiment)
location is (10, 150) and the receiver (with source in the re-
ciprocal experiment) location is (75, 110). The verification of
the reciprocity relations is shown in Figure 7 [(a) first experi-
ment in Figure 1 and (b) first experiment in Figure 2], Figure
8 [(a) first experiment in Figure 3 and (b) first experiment in
Figure 4], and Figure 9 (experiment in Figure 5), where the dots
corresponds to the reciprocal experiments. The sources of the

Table 1. Material properties.

VP VS ρ

Medium (km/s) (km/s) ε δ QP QS (g/cm3)

1 2 1 0.195 0.175 50 40 2
2 2.2 1.3 0.11 0.09 100 80 2.2
3 2.6 1.45 0.015 0.06 150 100 2.3
4 3 1.7 0.2 −0.05 40 20 2.4
5 3.8 2.1 0 0 100 75 2.2
6 3.6 1.7 0.065 0.059 200 150 2.6

FIG. 6. Model and source-receiver configuration for testing
the reciprocity relations due to different sources. The mate-
rial properties are given in Table 1.
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experiments in Figure 9 are

f xz
x (x, t; x0) = ψ55 ∗ h(t)∂zδ(x− x0),

f xz
z (x, t; x0) = ψ55 ∗ h(t)∂xδ(x− x0)

and

f zz
x (x, t; x′0) = ψ13 ∗ h(t)∂xδ(x− x′0),

f zz
z (x, t; x′0) = ψ33 ∗ h(t)∂zδ(x− x′0),

where ψI J are relaxation components (Carcione, 1995) (in the
elastic case, ψI J (t)= cI J H(t), where H is the Heaviside func-
tion). In this experiment, σ xz

zz is equal to σ zz
xz when the source

and receiver positions are interchanged.
Figure 10 represents the model and source-receiver config-

uration to test the reciprocity relation for an elastic half-space
with stress-free boundary conditions. The calculation uses a
numerical mesh with Nx = 135 and Nz= 81, a horizontal grid
spacing of 20 m, and a maximum vertical grid spacing of 20 m.
The source emits a pulse of peak frequency 30 Hz and is located
at 4 m from the free surface, while the receiver is 1200 m apart
from the source and at the same depth. Figure 11a compares
the dilatations due to dilatational sources (the superposition of
the first and second experiments in Figure 2), and Figure 11b
compares the particle velocity vz due to a dilatational source
and the dilatation due to a vertical force (dots, first experiment
of Figure 4). The first pulse is the compressional wave and the

FIG. 7. Verification of the reciprocity relations for (a) single
body forces, and (b) single couples without moment. They refer
to the first experiments in Figures 1 and 2, respectively (the dots
corresponds to the reciprocal experiments).

second pulse is a superposition of the Rayleigh and shear body
waves.

CONCLUSIONS

We obtained reciprocity relations for different sources
in a linear, inhomogeneous, anisotropic and viscoelastic
medium, and verified these relations by means of numerical

FIG. 8. Verification of the reciprocity relations for (a) single
couples with moment and (b) comparison of the particle ve-
locity vz due to a dilatational source and the dilatation due to
a vertical force. They refer to the first experiments in Figures
3 and 4, respectively (the dots corresponds to the reciprocal
experiments).

FIG. 9. Verification of the reciprocity relations for stress fields
(the dots corresponds to the reciprocal experiments). The
source/receiver configuration is shown in Figure 5.
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FIG. 10. Model and source-receiver configuration to test the
reciprocity relation for an elastic half-space with stress-free
boundary conditions.

FIG. 11. Reciprocity experiments for the model configuration
illustrated in Figure 10: (a) dilatations due to dilatational
sources and (b) particle velocity vz due to a dilatational source
and dilatation due to a vertical force. They refer to the first
experiment in Figure 4 and an experiment obtained by super-
position of the first and second experiments in Figure 2 (the
dots corresponds to the reciprocal experiments).

experiments. For many types of sources [e.g., dipoles or ex-
plosions (dilatations)], there is a field which satisfies the reci-
procity principle. An application of the reciprocity relations
can be found, for instance, in off-shore seismic experiments,
where the sources are of dilatational type and the hydrophones
records the pressure field (i.e., the dilatation multiplied by the
water bulk modulus). In land acquisition, the reciprocity re-
lations can be useful in borehole seismic experiments, where
couples and pressure sources and receivers are employed.
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APPENDIX

RECIPROCITY RELATIONS

Consider the monopole body forces defined by

gm
i (x; x0) = δ(x− x0)δm

i , (A-1)

with corresponding particle velocity vm
i (x, t; x0), and

gp
i (x; x′0) = δ(x− x′0)δ p

i , (A-2)

with particle velocity v p
i (x, t; x′0). Using this notation, the reci-

procity relation given in the main text by equation (12) can be
written as∫

dx
[
vm

i (x, t; x0)gp
i (x; x0)− gm

i (x; x0)v p
i (x, t; x′0)

] = 0.

(A-3)

In the following, we develop the principle for different sources
and receiver types.

Reciprocity for particle velocity

Substituting equations (A-1) and (A-2) into equation (A-3)
yields ∫

dx
[
vm

i (x, t; x0)δ(x− x′0)δ p
i

− δ(x− x0)δm
i v

p
i (x, t; x′0)

] = 0. (A-4)

Using the property of Dirac’s delta function for an arbitrary
function s(x),

a(x0) =
∫

dx a(x)δ(x− x0), (A-5)

and performing the summation over the index i gives

vm
p (x′0, t; x0) = v p

m(x0, t; x′0). (A-6)

Reciprocity for strain

Consider sources consisting of force couples of the type

gmn
i (x; x0) = ∂ j δ(x− x0)δm

i δ
n
j , (A-7)

and

gpq
i (x; x′0) = ∂ j δ(x− x′0)δ p

i δ
q
j . (A-8)

The i th component of the particle velocity generated by the
source in equation (A-7) is denoted by vmn

i (x, t; x0), while the
i th component of the particle velocity generated by the source
in equation (A-8) is denoted by v pq

i (x, t; x′0).
The reciprocity relation (12) takes the form∫

dx
[
vmn

i (x, t; x0)gpq
i (x; x′0)

− gmn
i (x; x0)v pq

i (x, t; x′0)
] = 0. (A-9)

Inserting equations (A-7) and (A-8) into equation (A-9), one
gets ∫

dx
[
vmn

i (x, t, x0)∂ j δ(x− x′0)δ p
i δ

q
j

− ∂ j δ(x− x0)δm
i δ

n
j v

pq
i (x, t; x′0)

] = 0. (A-10)

The delta function has the property

∂i a(x0) =
∫

dx a(x)∂i δ(x− x0), (A-11)

where a(x) is an arbitrary function. Carrying out the spatial
integral using this property and performing the implied sum-
mation over the i and j indices yields

∂qv
mn
p (x′0, t; x0) = ∂nv

pq
m (x0, t; x′0). (A-12)

Single couple with and without moment.—The reciprocity
relation given (A-12) applies directly to the case of a single
couple with moment if m 6= n and p 6= p.

If m= n and q= p, equation (A-12) reduces to a reciprocity
relation for single couple without moment.

Double couple without moment (dilatation).—Consider
force couples of the type

gi (x; x0) = ∂i δ(x− x0), (A-13)

and

gi (x; x′0) = ∂i δ(x− x′0). (A-14)

The i th component of the particle velocity corresponding to the
source (A-13) is written as vi (x, t; x0), while the i th component
of the particle velocity due to the source (A-14) is denoted by
vi (x, t; x′0).

Substituting equations (A-13) and (A-14) into equation (12)
of the main text gives∫

dx[vi (x, t; x0)∂i δ(x−x′0)−∂i δ(x−x0)vi (x, t; x′0)]= 0.

(A-15)

Using equation (A-11), the integration can be performed and
we get

∂i vi (x′0, t; x0)− ∂i vi (x0, t; x′0) = 0, (A-16)

and defining e= ∂i vi = ∂xvx + ∂yvy+ ∂zvz, equation (A-16) can
be written as

e(x′0, t; x0) = e(x0, t; x′0). (A-17)

Double couple without moment and monopole force.—Con-
sider force couples of the type

gi (x; x0) = ∂i δ(x− x0), (A-18)

and

gm
i (x; x′0) = δ(x− x′0)δm

i . (A-19)

The i th component of the particle velocity due to the source
(A-18) is denoted by vi (x, t; x0), while the i th component of
the particle velocity due to the source (A-19) is denoted by
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vm
i (x, t; x′0). Inserting equation (A-18) and (A-19) into equa-

tion (12) gives∫
dx
[
vi (x, t; x0)δ(x−x′0)δm

i −∂i δ(x−x0)vm
i (x, t; x′0)

] = 0.

(A-20)
Using equations (A-5) and (A-11), the integration can be per-
formed and we get[

vi (x′0, t; x0)δm
i − ∂i v

m
i (x0, t; x′0)

] = 0. (A-21)

Performing the summation over i and defining em = ∂i v
m
i =

∂xv
m
x + ∂yv

m
y + ∂zv

m
z yields

vm(x′0, t; x0) = em(x0, t; x′0). (A-22)

Double couple without moment and single couple.—Con-
sider force couples of the type

gi (x; x0) = ∂i δ(x− x0), (A-23)

and

gmn
i (x; x0) = ∂ j δ(x− x′0)δm

i δ
n
j . (A-24)

The i th component of the particle velocity due to the source
(A-23) is denoted by vi (x, t; x0), while the i th component of
the particle velocity due to the source (A-24) is denoted by
vmn

i (x, t; x′0)
Substituting equations (A-23) and (A-24) into equation (12)

of the main text gives∫
dx
[
vi (x, t; x0)∂ j δ(x− x′0)δm

i δ
n
j

− ∂i δ(x− x0)vmn
i (x, t; x′0)

] = 0. (A-25)

Using equation (A-11), the integration can be performed and
we obtain[

∂ j vi (x′0, t; x0)δm
i δ

n
j − ∂i v

mn
i (x0, t; x′0)

] = 0. (A-26)

Performing the summation over i and j and defining emn =
∂i v

mn
i = ∂xv

mn
x + ∂yv

mn
y + ∂zv

mn
z yields

∂nvm(x′0, t; x0) = emn(x0, t; x′0). (A-27)

Reciprocity of stress

Consider the following source:

f mn
i (x, t; x0) = [ψi jkl (x0, t)∂ j δ(x− x0)δm

k δ
n
l

] ∗ h(t),

(A-28)

and

f pq
i (x, t; x′0) = [ψi jkl (x′0, t)∂ j δ(x− x′0)δ p

k δ
q
l

] ∗ h(t).

(A-29)
The i th component of the particle velocity due to the source
(A-28) is indicated by vi (x, t; x0), while the i th component of

the particle velocity due to the source (A-29) is indicated by
vi (x, t; x′0), and we omit, for simplicity, the superscripts. The
corresponding components of the stress tensor are denoted by
σmn

i j (x, t; x0) and σ pq
i j (x, t; x′0). The mn and pq superscripts of

the stress tensor components correspond to the mnand pq su-
perscripts of the force components. Inserting equations (A-28)
and (A-29) into equation (8) gives∫

dx
{
vi (x, t; x0) ∗ [ψi jkl (x′0, t)∂ j δ(x− x′0)δ p

k δ
q
l

] ∗ h(t)

(A-30)
− vi (x, t; x′0) ∗ [ψi jkl (x0, t)∂ j δ(x− x0)δm

k δ
n
l

] ∗ h(t)
} = 0.

(A-31)

Using equation (A-11), the integration can be performed and
we get[

∂ j vi (x′0, t; x0) ∗ [ψi jkl (x′0, t)δ
p
k δ

q
l

] ∗ h(t) (A-32)

−[∂ j vi (x0, t; x0) ∗ [ψi jkl (x0, t)δm
k δ

n
l

] ∗ h(t)= 0. (A-33)

We now use that fact that ψi jkl =ψkli j to rewrite equa-
tion (A-33):[

ψi jkl (x′0, t; x0) ∗ ∂lvk(x′0, t; x0)δ p
i δ

q
j

] ∗ h(t) (A-34)

−[ψi jkl (x0, t; x′0) ∗ ∂kvk(x0, 0, t; x′0)δm
i δ

n
j

] ∗ h(t) = 0.

(A-35)
We can now use the symmetry relations ψi jkl =ψ j ikl =ψi j lk =
ψ j i lk to obtain[

σmn
i j (x′0, t; x0)δ p

i δ
q
j

] ∗ h(t)

− [σ pq
i j (x0, t; x′0)δm

i δ
n
j

] ∗ h(t) = 0, (A-36)

where the constitutive relation (2) has been used. Performing
the implied summations over i and j gives

σmn
pq (x0, t; x0) ∗ h(t)− σ pq

mn(x0, t; x′0) ∗ h(t) = 0. (A-37)

Equation (A-37) can be Fouriér transformed into
mn∑
pq

(x′0, ω; x0)H(ω)−
pq∑
mn

(x0, ω; x′0)H(ω) = 0, (A-38)

where
∑mn

pq ,
∑pq

mn, and H are the Fouriér transforms of σmn
pq ,

σ pq
mn, and h, respectively. It is now clear that equation (A-38) is

equivalent to
mn∑
pq

(x′0, ω; x0)−
pq∑
mn

(x0, ω; x′0) = 0, (A-39)

which in the time domain reads

σmn
pq (x′0, t; x0) = σ pq

mn(x0, t; x′0). (A-40)

Finally, differentiating both sides with respect to time yields

σ̇mn
pq (x′0, t; x0) = σ̇ pq

mn(x0, t; x′0). (A-41)


